

Comunità energetiche rinnovabili

Transizione energetica a misura del cittadino

Andrea Lanzini
Dipartimento Energia | Energy Center
Politecnico di Torino

16/07/20

Indice

Obiettivi di crescita FER in Italia al 2030

16/07/20

_Comunità energetiche rinnovabili: perché, come e dove?

_A che punto siamo con le norme e i regolamenti

Efficienza energetica

Riduzione dei consumi primari e finali di energia al 2030 rispetto allo scenario tendenziale*

Clima

Riduzione al 2030 delle emissioni di gas serra rispetto ai valori del 1990

Rinnovabili

Contributo ai consumi finali di energia al 2030

*Il target è fissato rispetto ad uno scenario al 2030 di crescita tendenziale con anno di riferimento 2007.

Obiettivi di crescita delle FER elettriche

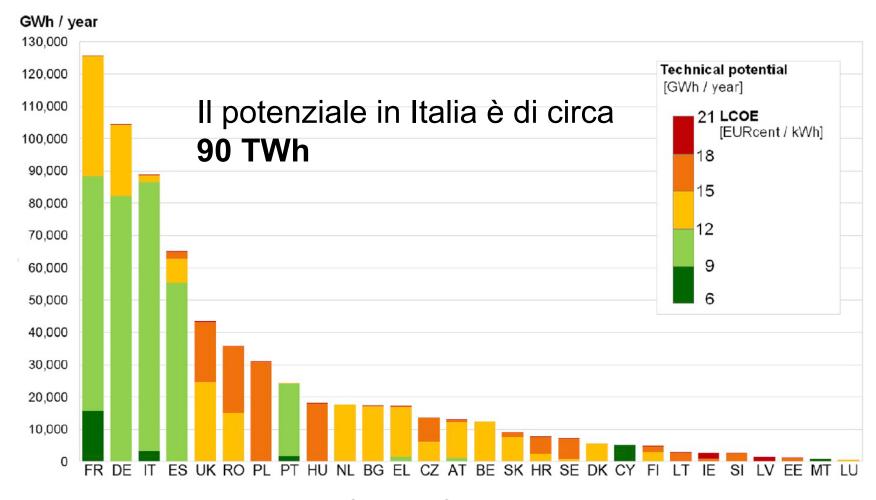
	2016	2017	2025	2030
Produzione rinnovabile	110,5	113,1	139,3	186,8
Idrica (effettiva)	42,4	36,2		
Idrica (normalizzata)	46,2	46,0	49,0	49,3
Eolica (effettiva)	17,7	17,7		
Eolica (normalizzata)	16,5	17,2	31,0	40,1
Geotermica	6,3	6,2	6,9	7,1
Bioenergie*	19,4	19,3	16,0	15,7
Solare	22,1	24,4	36,4	74,5
Denominatore - Consumi Interni Lordi di energia elettrica	325,0	331,8	331,8	337,3
Quota FER-E (%)	34,0%	34,1%	42,0%	55,4%

Fonte: PNIEC (dati in TWh)

L'incremento previsto di rinnovabili al 2030 in Italia

	2016	2017	2025	2030	
Numeratore	21.081	22.000	27.428	33.098	_
Produzione lorda di energia elettrica da FER	9.504	9.729	11.981	16.060 —	→ 186 TWh
Consumi finali FER per riscaldamento e raffrescamento	10.538	11.211	13.467	14.701	_
Consumi finali di FER nei trasporti	1.039	1.060	1.980	2.337	_
Denominatore - Consumi finali lordi complessivi	121.153	120.435	116.014	111.439	
Quota FER complessiva (%)	17,4%	18,3%	23,6%	29,7%	
_					-

Fonte: PNIEC (dati in ktep)


Sono richiesti al 2030 +76 TWh di RES elettriche:

- +50 TWh di solare (FV)
- +24 TWh di eolico

Potenziale tecnico di fotovoltaico sui tetti in Europa

Source: JRC, Elsevier

Indice

Obiettivi di crescita FER in Italia al 2030

_Comunità energetiche rinnovabili: perché, come e dove?

_A che punto siamo con le norme e i regolamenti?

Comunità energetiche rinnovabili – Perché?

- Coinvolgimento del cittadino e sua maggior consapevolezza su tematiche energetiche e ambientali
- Opportunità per una spinta alla digitalizzazione e sistemi intelligenti
- Diffusione delle FER (politica EU su Energia & Clima)
- Vantaggi tecnici (autoconsumo; non occupazione del suolo con tetti FV; maggiore accettazione sociale di nuovi impianti)
- Vantaggi sociali (povertà energetica; nuova, o ritrovata, attrattività di territori extra-urbani e/o marginali)

Comunità energetiche rinnovabili – Come?

La comunità energetica è uno strumento per coinvolgere il cittadino. Questo può avvenire in diversi modi e a diversi livelli di coinvolgimento.

Comunità energetica = piccoli impianti FER (ad es. tetti fotovoltaici)

= medi impianti FER a partecipazione pubblica*

= gestione intelligente di *virtual power plants***

*,** = gli strumenti abilitanti possono essere, ad esempio, strumenti di crowd-funding, cooperative energetiche, partnership pubbliche-private su appalti FER.

Comunità energetiche rinnovabili – *Dove*?

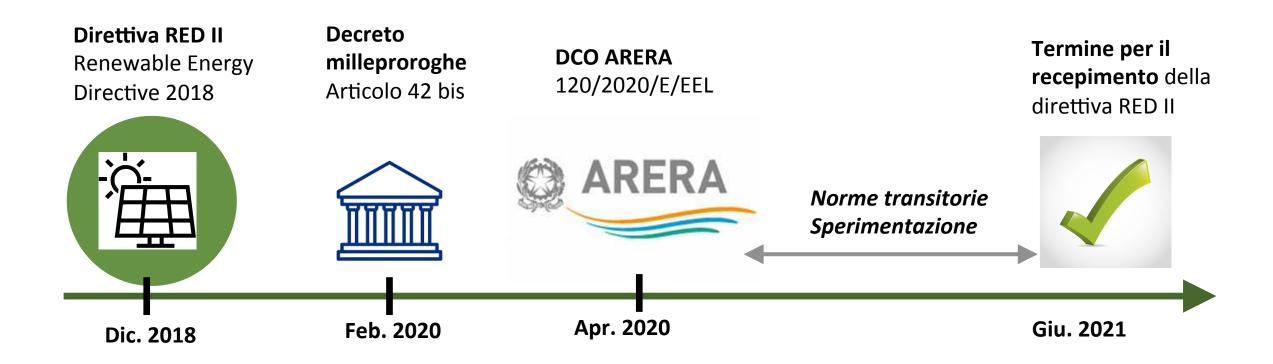
L'istituzione di una comunità energetica prevede:

- individuazione di un'area geografica (e suo collegamento alle reti di distribuzione dell'energia);
- 2. un'analisi del territorio (non solo dal punto di vista strettamente energetico);
- 3. analisi/stima dei prelievi (consumi) degli utenti;
- 4. censimento dei sistemi di produzione esistenti;
- 5. stima dei potenziali naturali e tecnici di nuovi impianti FER.

Questi sono i <u>prerequisiti per una conoscenza del territorio</u> che consenta di pianificare successivi piani d'azione.

Indice

Obiettivi di crescita FER in Italia al 2030


_Comunità energetiche rinnovabili: perché, come e dove?

_A che punto siamo con le norme e i regolamenti?

Iter delle CER

CER – Scenario 'autoconsumatore collettivo'

Ipotesi:

- 1500 €/kWp
- Manutenzione 2% del CAPEX all'anno
- Inflazione 1%
- 10 anni di ritorno dell'investimento
- Località: Torino; Roma; Catania
- Installazione su edificio in condizioni: ottimali (orientazione e inclinazione ottime); orientazione est/ovest con inclinazione pari a falda del tetto

Obiettivo: Valutazione dell'<u>incentivo</u> per la valorizzazione dell'energia elettrica prodotta? Abbiamo calcolato un valore tra i 12 e i 17 cent€/kWh

Risparmio in bolletta per l'utente finale

Ipotesi:

- Famiglia tipo con 3.000 kWh/anno di prelievo dalla rete
- Valorizzazione autoconsumo: 1,0; 1,5 c€/kWh
- Quota di autoconsumo: 50%

Obiettivo: il risparmio in bolletta è 30-45 €/anno (le spese amministrative di gestione della CER non sono incluse).

